Conditional Restricted Boltzmann Machines for Structured Output Prediction
نویسندگان
چکیده
Conditional Restricted Boltzmann Machines (CRBMs) are rich probabilistic models that have recently been applied to a wide range of problems, including collaborative filtering, classification, and modeling motion capture data. While much progress has been made in training non-conditional RBMs, these algorithms are not applicable to conditional models and there has been almost no work on training and generating predictions from conditional RBMs for structured output problems. We first argue that standard Contrastive Divergence-based learning may not be suitable for training CRBMs. We then identify two distinct types of structured output prediction problems and propose an improved learning algorithm for each. The first problem type is one where the output space has arbitrary structure but the set of likely output configurations is relatively small, such as in multi-label classification. The second problem is one where the output space is arbitrarily structured but where the output space variability is much greater, such as in image denoising or pixel labeling. We show that the new learning algorithms can work much better than Contrastive Divergence on both types of problems.
منابع مشابه
Belief Propagation in Conditional RBMs for Structured Prediction
Restricted Boltzmann machines (RBMs) and conditional RBMs (CRBMs) are popular models for a wide range of applications. In previous work, learning on such models has been dominated by contrastive divergence (CD) and its variants. Belief propagation (BP) algorithms are believed to be slow for structured prediction on conditional RBMs (e.g., Mnih et al. [2011]), and not as good as CD when applied ...
متن کاملMaterial for : Factored Conditional Restricted Boltzmann Machines for Modeling Motion Style ∗ Graham
In this document, we provide additional details for variants of Conditional Restricted Boltzmann Machines (CRBMs). Specifically we focus on each of the four models compared in the Quantitative Evaluation (Sec. 4.4). We collect the formulae required for contrastive divergence learning of parameters, synthesis from a trained model by alternating Gibbs samping, and forward prediction from a traine...
متن کاملLearning Stochastic Feedforward Neural Networks
Multilayer perceptrons (MLPs) or neural networks are popular models used for nonlinear regression and classification tasks. As regressors, MLPs model the conditional distribution of the predictor variables Y given the input variables X . However, this predictive distribution is assumed to be unimodal (e.g. Gaussian). For tasks involving structured prediction, the conditional distribution should...
متن کاملConditional Restricted Boltzmann Machines for Multi-label Learning with Incomplete Labels
Standard multi-label learning methods assume fully labeled training data. This assumption however is impractical in many application domains where labels are difficult to collect and missing labels are prevalent. In this paper, we develop a novel conditional restricted Boltzmann machine model to address multi-label learning with incomplete labels. It uses a restricted Boltzmann machine to captu...
متن کاملConditional Restricted Boltzmann Machines for Cold Start Recommendations
Restricted Boltzman Machines (RBMs) have been successfully used in recommender systems. However, as with most of other collaborative filtering techniques, it cannot solve cold start problems for there is no rating for a new item. In this paper, we first apply conditional RBM (CRBM) which could take extra information into account and show that CRBM could solve cold start problem very well, espec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011